Fourier-Mukai transforms and stable bundles on elliptic curves

نویسندگان

  • Georg Hein
  • David Ploog
چکیده

We prove Atiyah's classi cation results about indecomposable vector bundles on an elliptic curve by applying the Fourier-Mukai transform. We extend our considerations to semistable bundles and construct the universal stable sheaves. MSC 2000: 14H60 Vector bundles on curves and their moduli, 14H52 Elliptic curves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourier-mukai Transforms for Abelian Varieties and Moduli of Stable Bundles

We classify Fourier-Mukai transforms for abelian varieties. In the case of a principally polarized abelian surface these are then used to identify a large family of moduli spaces of stable vector bundles as Hilbert schemes of points on the surface.

متن کامل

Structure of the Moduli Space of Stable Sheaves on Elliptic Fibrations D. Hern Andez Ruip Erez

We describe a method for characterizing certain connected components of the moduli space M(a; b) of torsion-free sheaves on a elliptic surface X with a section which are stable with respect to a polarization of type aH + bb, H being the section and the elliptic bre (b 0) and whose relative degree is zero. We construct all sheaves in these components as Fourier-Mukai transforms of the pure dimen...

متن کامل

Diffeomorphisms and families of Fourier–Mukai transforms in mirror symmetry

Assuming the standard framework of mirror symmetry, a conjecture is formulated describing how the diffeomorphism group of a Calabi–Yau manifold Y should act by families of Fourier–Mukai transforms over the complex moduli space of the mirror X. The conjecture generalizes a proposal of Kontsevich relating monodromy transformations and selfequivalences. Supporting evidence is given in the case of ...

متن کامل

A Problem List for Compact Hyperkähler Manifolds

In his thesis, Caldararu described twisted Fourier-Mukai transforms for elliptic fibrations. In this talk I will describe how certain holomorphic symplectic manifolds can be deformed to integrable systems, i.e. fibrations by abelian varieties. These are higher dimensional analogues of elliptic K3 surfaces, and twisted Fourier-Mukai transforms

متن کامل

Semi-homogeneous Sheaves, Fourier-mukai Transforms and Moduli of Stable Sheaves on Abelian Surfaces

This paper studies stable sheaves on abelian surfaces of Picard number one. Our main tools are semi-homogeneous sheaves and Fourier-Mukai transforms. We introduce the notion of semi-homogeneous presentation and investigate the behavior of stable sheaves under Fourier-Mukai transforms. As a consequence, an affirmative proof is given to the conjecture proposed by Mukai in the 1980s. This paper al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005